Formal analysis of novel morphological processes in Rasta Talk

Received: date / Accepted: date

Abstract The speech of members of the Rastafari community (originating in Jamaica) exhibits various linguistic innovations, including garden-variety extensions of productive morphological patterns to produce neologisms like upful “positive” or livity “lifestyle”, as well as examples of punning/word-play like politricks “politics”. But we also find examples of more unusual linguistic innovations, such as outiquity and Idureth, both part of larger systems of morphological transformations.

Words like Idureth and Iver are part of a larger group of commonly used “I words”, which often involve the replacement of the initial syllable with I [ɑɪ]. However, the pattern of I-replacement is considerably more complex than that, as can be seen from Iration (<creation) and Irous (<desirous)—for which we would expect Iration and Isirous, respectively. The morphological process involved here then is not simple replacement of the first sound or syllable, but are rather akin to the process of blending (e.g. spork, brunch).

One factor involved is maximizing overlap, so chillax takes advantage of an overlap of l, which does not occur in the hypothetical alternative. Likewise, Irous maximizes overlap between the I component and desirous by aligning I with the position of the homophonous [ɑɪ] sound in des[ɑɪ]rous. Further evidence of the complexity of I-word formation can be seen in the case of monosyllable base-words, e.g. food become yood in Rasta Talk.

I present an Optimality Theoretic analysis of I-words, which treats them as a special subtype of blending.

Keywords Rastafari · blending · morphology · Optimality Theory

1 Overview of Formal analysis of novel morphological processes in Rasta Talk

In addition to general word-play, Rasta Talk (also referred to variously as Dread Talk, Rastafari English, I-ance, I-yaric, and Livalect), a form of speech used in Rastafari com-
mmunities (for an overview, see Chevannes 1989, amongst many others) prominently util-
ises two salient morphological transformation processes: overstanding (so termed by Slade
to appear-), also examined by Pollard 1980, 2000; Alleyne 1988; Douglas to appear) and
Iformation (the “I-words” of Pollard 2000). The first of these is notable in that it is
not easily reducible to any well-known morphological process—while it superficially re-
sembles generic punning or word-play or even folk etymology, it differs crucially from
such processes in its deeper structural properties. On the other hand, Iformation, which
looks at first blush simply as the replacement of the first syllable/letter of a word by
[aj]/“I”, actually displays a more complex pattern which seems best analysed as a special
variety of blending or portmanteau-creation.

After some brief remarks on overstandings, I turn to developing a formal analysis
for Iformation, couched within an Optimality Theoretic (Prince and Smolensky, 1993)
framework, modelled, in part, on analyses of linguistic blending.

2 Overstandings

Prototypical examples of overstandings are overstand “understand”, downpress “oppress”,
apprecilove “appreciate”, liviciate “dedicate”. These appear resemble folk-etymology in cer-
tain respects, i.e. downpress as a reformation of oppress seems to hinge on a misanalysis of
up + press. Transformations like appreciate (as if appre– + bate) to apprecilove and cigarette
(as if see-garette strongly suggest that unintentional misanalysis is not involved in over-
standings, but rather that overstandings are triggered by the connotative semantics of the
transformed words (unlike folk etymology, in which denotations are central). Fur-
thermore, unlike folk-etymologies or word-play/punning (on which see Zwicky and Zwicky
1986), the transformation involved in overstanding is not constrained by phonological
identity. (Wordplay/puns are found in Rasta discourse as well, of course, e.g. Rasta-Far
Eye for “Rastafari”; shitstem for “system” — note the phonological (near)identity of the
transformed forms; these are distinct from overstandings.)

The transformational component of overstandings typically involves replacing a
morpheme (e.g. “under” of “understand”) or putative morpheme (e.g. “(h)ate” of “appre-
ciate”) with its semantic polar opposite, thus “understand” –> “overstand”; “appreci(h)ate”
–> “apprecilove”. Such transformations are triggered by the misalignment of the connota-
tions of words and their component elements. Thus, the connotations of “oppress” are
negative, but its putative component “up” has highly positive connotations; the replace-
ment of positive “up” by negative “down” thus aligns the connotations of the word and
its components. “Liviciate” illustrates the converse operation, with the positive connota-
tions of ‘dedicate’ being out of alignment with its putative component ‘dead’ prior to the
application of overstanding.

Overstandings can thus be analysed as the replacement of morpheme by its semantic
opposite (e.g. up by down) when the connotation (positive vs. negative) of that morpheme
does not match the connotation of the word, although there do exist non-prototypical
examples of overstandings including fulljoy for “enjoy” (treated as end-joy, but expected
overstanding is startjoy), kingciples “principles”, which do not involve clear replacement
3 Iformation

Less constrained and thus (potentially) more productive than overstandings are Iformations, exemplified by *Equality* “equality”, *Inity* “unity”, *Irish* “spirits”, *Ippa* “pepper”, *Iboll* “behold” — all of which appear to simply involve the replacement of the initial syllable of a word by /aɪ̯/. Iformation is more complex however, otherwise all monosyllables would reduce to /aɪ̯/, and other attested Iformations are unpredicted on this simplistic analysis: e.g. we find *Irate* /aɪ̯reɪt/ “create” rather than /aɪ̯jeɪt/, *Irous* /aɪ̯ras/ “desirous” rather than /aɪ̯zaɪ̯ras/. Usually the meaning of such I-words is identical or nearly so to their sources, though sometimes the Iformations seem to be imbued with more mystical significance.

In a fairly small number of cases, more significant semantics shifts seem to have occurred; e.g. *ital* (if from *vital*) “kosher”, fit for Rastafari diet/livity”, *irie* (if from *merry*) “cool, copacetic, good”.

The rise of Iformation is not fully clear, though research done by Homiak (1995) suggests that these first appear in a very small group of Rastas (the I-gelic House, first grouped at Paradise and later on Wareika Hill, with later dispersals to places such as Trench Town) in the late 1950s. It seems not unreasonable to posit that the appearance of Iformation at the end of the 1950s is connected to the changes in the pronominal system which first appear earlier in the 50s, in which the Jamaican Creole 1st person pronoun *mi* (used for all case forms) is replaced by *aɪ̯* (again, used for all case forms) [perhaps due to a combination of Biblical influences and philosophical analysis of “me” as accusative, thus a non-agent and thus stripped of power vs. “I” as nominative and therefore agentive and therefore exerting power], and further, though somewhat more sporadically, the second person form *yu* is replaced by *da aɪ̯* (plural *da aɪ̯z*).

<table>
<thead>
<tr>
<th>Standard English</th>
<th>Jamaican Creole (Patois)</th>
<th>Rastafari English</th>
</tr>
</thead>
<tbody>
<tr>
<td>1sg I / me / my</td>
<td>mi</td>
<td>I, Iman, (I and I)...</td>
</tr>
<tr>
<td>2sg you / your</td>
<td>yu</td>
<td>da I, da Iman (thy)...</td>
</tr>
<tr>
<td>3sg he, she, it / him, her, it / his, her, its</td>
<td>im, (i, shi, ar) (im, i, shi)...</td>
<td></td>
</tr>
<tr>
<td>1pl we / us / our</td>
<td>wi</td>
<td>I and I, (I, we)...</td>
</tr>
<tr>
<td>2pl you (all) / your</td>
<td>yu, unu</td>
<td>da Is, (unu)...</td>
</tr>
<tr>
<td>3pl they / them / their</td>
<td>dem</td>
<td>(dem, dey)...</td>
</tr>
</tbody>
</table>

It seems at least plausible that the initial appearance of I-words represents an extension of these changes in the pronominal system, so that the phonological sequence /ju/ could also be replaced by /aɪ̯/, this would produce forms like /aɪ̯niti/ for earlier /juniti/ “unity”, /aɪ̯man/ “I-man” for earlier /juman/ “human”, etc. Yawney (1979, 171), in her discussion of changes in the Rastafari pronominal system, including the replacement of *you*, even refers to this process in terms of phonology: “the elimination of the sound *you* from the vocabulary”. [my emphasis]

Whatever the historical antecedents of I-words and whatever their connection to the Rasta Talk pronominal system, they are certain allied to what we may call Y-words, e.g. forms like *yood* /jud/ for “food”, *yife* /jaɪ̯f/ for “life” and so on. Homiak (1995, 163) points
to Bilby’s (1985, 145–6) suggestion that these represent an extension of “Bongo Talk”, specifically the representation of Anansi’s ‘tongue-tied’ lisping speech in which initial liquids (/l/ and /r/) are replaced by /j/. This seems rather unlikely to me, even setting aside the linguistic difficulties of such an extension, as wily, deceitful Anansi seems an unlikely exemplar for Rastas (see Forsythe 1983 and Chevannes 1995, 120–1 on the association of dreadlocks with the lion’s mane and the lion as alternative self-concept to the spider-her). Again, whatever the historical derivation of Y-words, synchronically they appear in roughly complementary distribution to I-words, and /j(=y/) can straightforwardly be understood as an allomorph of /aɪ̯/ (in an onset position).

I propose that both I-words and Y-words can be analysed as a sort of special case of portmanteau words aka linguistic blends (see Algeo (1977), Hock and Joseph 1996/2009, 161–5, Bat-El (2006) for overviews). Thus “motel” originates as a blend of “motor” and “hotel”, so [aɪ̯siv] originates as a sort of blend of “I” and “receive”; as “smog” is a blend of “smoke” and “fog”, so /jud/ is a blend of “I” and “food”. Also, like blends, I-words and Y-words (almost always) have the same number of syllables as their longest source word. So just as ebonics is a blend of ebony+phonics and pollutician is a blend of pollute+politician, so Iditation is a blend of I+meditation.

In the last decade and a half there have been a number of productive analyses of blending couched within Optimality Theory (Bat-El 1996, Piñeros 2004, Tomaszewicz 2012, Shaw et al. 2014, Ahn 2014, amongst others), and so I offer a first pass at an optimality theoretic analysis of the Iformation process underlying both I-words and Y-words.

/aɪ̯/ always appears on the left-edge of the output form, e.g. the Iformation of “meditation” is /aɪ̯dɪteɪʃan/ not */mɛdɪteɪʃaɪ̯/. Thus there must exist an undominated constraint which requires this alignment:

(i) **Align(aɪ̯,left,**wd,**left):** The left edge of /aɪ̯/ (the “secondary” source form) must align with the left edge of the word.

This constraint is also violated if the /aɪ̯/ component has no correspondent in the output form.

Similarly, the right edge of the source form always seems to align with the right edge of the output form, and this constraint is also violated if the source form fails to have any correspondent in the Iformation output.

For many types of blends, the basic metrical structure is identical to that of one of the source forms (generally the longer form). Similarly, Iformations almost always maintain the syllable count and stress pattern of their lexical source, thus /ˌaɪ̯dɪˈteɪʃan/ replicates the stress pattern of /ˌmɛdɪˈteɪʃan/ and preserves the same syllable count. Thus MetricalConsistency(SourceForm) (see Burzio 1994, 2000a,b, Tomaszewicz 2012; cp. Benua 1997) appears to be highly ranked, dominating the Maximisation constraints, which require that segments of the source form be present in the output form.

(ii) **MetricalConsistency:** Every morpheme must be as metrically consistent as possible. (Burzio 1994: 229)

(2) is violated by outputs in which have different syllable counts or stress assignments from their source.
Maximisation constraints penalise every instance of a segment appearing in the source which has no correspondent in the output.

<table>
<thead>
<tr>
<th></th>
<th>ALIGN(/aɪ̯/,L,W₀₁,L)</th>
<th>ALIGN(R,S,F,R,W₀₁)</th>
<th>MetCon(S,F)</th>
<th>Max(S,F)</th>
<th>Max(aɪ̯)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>aɪ̯siv</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>b.</td>
<td>riaɪ̯</td>
<td>!</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>risaɪ̯</td>
<td>!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>aɪ̯risiv</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>risivaɪ̯</td>
<td>!</td>
<td>**</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

The information generally requires that the syllable /aɪ̯/ not acquire a coda from the source form, even at the cost of failing to parse segments of the source form. Thus “infant” becomes /aɪ̯fant/ rather than */aɪ̯nfant/. In order to account for this, I adopt the notion of “Crisp Edges”, formulated in Itô and Mester (1999):

(3) **CrispEdge(σ)**: Syllables parsed in the output should have the same edges as their sources.

That is, syllables should not pick up extra segments. Thus, the constraint mandating that /aɪ̯/ in the output should not acquire additional segments (like a coda from the primary source form), outranks the constraint requiring that all segments from the primary source form appear in the output. In the examples below in which CrispEdge(σ) is violated, it ends up being violated twice - once for a non-crisp right edge of /aɪ̯/, once for a non-crisp left edge of the primary source form.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>aɪ̯nʃɛnt</td>
<td></td>
<td></td>
<td>!</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>aɪ̯ʃɛnt</td>
<td></td>
<td></td>
<td>!</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>aɪ̯eɪ̯nʃɛnt</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>ɪ̯ienʃɛnt</td>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

In the case of monosyllabic source forms, fully parsing /aɪ̯/ would require either not parsing the source form, or violating Metric Consistency, or forcing a coda into the /aɪ̯/ sequence. Inside, /aɪ̯/ is partially parsed, dropping the /a/, and resulting in a “Y-word”.

A new constraint appears in this tableau:

(4) **Contiguity**: Segments in the output must appear in the same configuration/order as in their sources.

In subsequent derivations examples will be seen in which optimal candidates incur Contiguity violations.
Thus, prototypical polysyllabic Iformations involve the replacement of the initial syllable of the source word with /aɪ̯/; while monosyllabic Iformations replace the onset of the initial syllable of the source form with /ɪ̯/. However, we also observe a number of unexpected Iformations, including:

(5) a. /əɡriʃan/ for “creation” (expected */aɪ̯ieʃan/)
b. /əmɪz/ for “times” (expected */aɪ̯mɪz/)
c. /əɡəras/ for “desirous” (expected */aɪ̯əɡəras/)
d. /aɪ̯onguo/ for “bongo” (expected */aɪ̯go/)
e. /ɪ̯uŋkɪn/ for “pumpkin” (expected */aɪ̯kɪn/)
f. /əɡəjɑːdɑː/ for “father” (expected */aɪ̯da/)
g. /ɑːɡəjɑːtɑː/ for “daughter” (expected */aɪ̯ta/)
h. /əɡəmɑːɡʊɑː/ for “mango” (expected */aɪ̯go/ [or */ɪ̯aŋgʊo/, given (5-e)])

(γ-a) suggests that some amount of metathesis is allowed, if it works to preserve the segments of the source form, even at the cost of violating Contiguity. However, only a certain amount of metathesis is permitted, or else we would expect */aɪ̯kieʃan/ or */aɪ̯krieʃan/, as they preserve even more of the segments of the source form. I utilise here a conjoined constraint (Smolensky, 1997) Contiguity-x₂, in order to capture the fact that while a minor discontinuity from the source form is a low-ranked violation, displacement of a segment by two or more places is a serious violation.

(6) MorphemicDisjointness: x∈M₁ → x∉M₂, for instances of morphemes M₁∉M₂ and for x a specific segmental (autosegmental) token. I.e., “distinct instances of morphemes have distinct contents, tokenwise.”
These examples also highlight the similarity of Iformation to blending; blends also show a tendency to align the "switch point". That is, if the primary source form contains the sequence /aɪ̯/, the Iformation grammar tolerates the violation of certain other constraints if it can align this instance of /aɪ̯/ with the left edge of the output form.

I posit that the constraint which produces this effect (the "double use" of /aɪ̯/ where it occurs in the primary source form) is another CrispEdge constraint, relativised to words:

(7) **CrispEdge(Wd):** Words parsed in the output should have the same edges as their sources.

CrispEdge(Wd) is completely satisfied where only the primary source form is parsed (with merger of /aɪ̯/ between the two source forms); any instances where both source forms (i.e. the primary source form and /aɪ̯/) are parsed, in whole or part, in the output incur two violations of CrispEdge(Wd) (one for each source form).

<table>
<thead>
<tr>
<th></th>
<th>A(00)/(aɪ̯,L,W,0,L)</th>
<th>A(01)/(R,SF,R,W,o)</th>
<th>CasesEdge(Wo)</th>
<th>MetCon(SF)</th>
<th>CasesEdge(e)</th>
<th>Max(SF)</th>
<th>Max(aɪ̯)</th>
<th>MsMaxDis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>τaɪ̯ez</td>
<td>≠!</td>
<td></td>
<td></td>
<td>^</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>aɪ̯</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>ʌtaɪ̯ez</td>
<td>≠!*</td>
<td>+</td>
<td></td>
<td>^</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>ʌwz</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>ʌmiz</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Iformation even prefers to take advantage of the overlap when this means violating MetricalConsistency to the source form by failing to parse an initial syllable if the /aɪ̯/ overlap is not word-initial, as in /aɪ̯ras/ for "desirous".

<table>
<thead>
<tr>
<th></th>
<th>A(00)/(aɪ̯,L,W,0,L)</th>
<th>A(01)/(R,SF,R,W,o)</th>
<th>CasesEdge(Wo)</th>
<th>MetCon(SF)</th>
<th>CasesEdge(e)</th>
<th>Max(SF)</th>
<th>Max(aɪ̯)</th>
<th>MsMaxDis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>doaɪ̯ez</td>
<td>≠!</td>
<td></td>
<td></td>
<td>^</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>aɪ̯ez</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>ʌdoaɪ̯ez</td>
<td>≠!*</td>
<td>+</td>
<td></td>
<td>^</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>ʌwez</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>ʌmez</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are of course limits to this—otherwise all source forms with word-final /aɪ̯/ would reduce to monosyllabic /aɪ̯/. The Iformation grammar will tolerate at most the deletion of an initial syllable (as in /aɪ̯ras/ above). This is represented in the grammar by the equal ranking of CrispEdge(Wd) and MetCon(SF). Any case where CrispEdge(Wd) is violated the constraint incurs two marks (for reasons explained above); this means that the deletion of three syllables incurs worse violations than non-crispness of word edges.

<table>
<thead>
<tr>
<th></th>
<th>A(00)/(aɪ̯,L,W,0,L)</th>
<th>A(01)/(R,SF,R,W,o)</th>
<th>CasesEdge(Wo)</th>
<th>MetCon(SF)</th>
<th>CasesEdge(e)</th>
<th>Max(SF)</th>
<th>Max(aɪ̯)</th>
<th>MsMaxDis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>avaɪ̯asplaz</td>
<td>≠*.preferences</td>
<td></td>
<td></td>
<td>^</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>aɪ̯</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>ʌavalaz</td>
<td>≠!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Even the deletion of two syllables will be non-optimal, as though the constraints CrispEdge(Wd), MetCon(SF) are equally-ranked, the candidate deleting more syllables will end up with more violations of Max(SF), breaking the tie.
Below I provide the tableaux for “receive” and “food” again, with the fuller set of constraints shown, in order to establish that the same candidates are predicted to be optimal as above.

<table>
<thead>
<tr>
<th></th>
<th>Align(/aɪ/,L,Wd,L)</th>
<th>Align(R,S,F,Wd)</th>
<th>ChrsFEdge(Wd)</th>
<th>MetCon(SF)</th>
<th>ChrsFEdge(σ)</th>
<th>Max(SF)</th>
<th>Max(a)</th>
<th>MorphDm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>-s!++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>+</td>
<td>s!</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For examples like /joŋɡuo/ for “bongo” (rather than /aɪ̯guo/) /juŋkɪn/ for “pumpkin” (rather than /aɪ̯ŋkɪn/) can be explained as the result of the fact that—as for blends—that the source forms must be recoverable from the output form.

The putative Iformation /aɪ̯naguo/ “mango” is still problematic—the apparent metathesis of /a/ and /n/ is not clearly-motivated, nor would RESOLVE be of much use, as the relation of /aɪ̯naguo/ to /manguo/ is not terribly obvious. But perhaps this is not a straight Iformation, but rather involves some sort of word-play, i.e. as a sort of reformulation of “I nah go”.

Forms like /aɪ̯jaada/ “father”, /aɪ̯jaata/ “daughter” perhaps represent some sort of recursive application of Iformation (also /aɪ̯jasta/ “Rasta”). This seems plausible, as we

Table 1: Tableaux for “receive” and “food”

<table>
<thead>
<tr>
<th></th>
<th>Align(/aɪ/,L,Wd,L)</th>
<th>Align(R,S,F,Wd)</th>
<th>ChrsFEdge(Wd)</th>
<th>MetCon(SF)</th>
<th>ChrsFEdge(σ)</th>
<th>Max(SF)</th>
<th>Max(a)</th>
<th>MorphDm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>-s!++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>+</td>
<td>s!</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Tableaux for “receive” and “food” (continued)

<table>
<thead>
<tr>
<th></th>
<th>Align(/aɪ/,L,Wd,L)</th>
<th>Align(R,S,F,Wd)</th>
<th>ChrsFEdge(Wd)</th>
<th>MetCon(SF)</th>
<th>ChrsFEdge(σ)</th>
<th>Max(SF)</th>
<th>Max(a)</th>
<th>MorphDm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>-s!++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>+</td>
<td>s!</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Tableaux for “receive” and “food” (continued)

<table>
<thead>
<tr>
<th></th>
<th>Align(/aɪ/,L,Wd,L)</th>
<th>Align(R,S,F,Wd)</th>
<th>ChrsFEdge(Wd)</th>
<th>MetCon(SF)</th>
<th>ChrsFEdge(σ)</th>
<th>Max(SF)</th>
<th>Max(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>-s!++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>+</td>
<td>s!</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>++</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(8) **RECOVER**: Both source words of a portmanteau should be promptly recoverable from it. (Piñeros, 2004)
find alongside of /jaund/ “sound”, also /aɪ̯jaund/ and /aɪ̯jajaund/ (Homiak, 1995, 162–3). Investigation of monosyllabic source words beginning with /j/ would be helpful to test this hypothesis. Additionally, other elements of Jamaican Creole prosody may be at play and are potentially responsible for the appearance of unpredicted Iformations.1

In addition, however, it seems likely that alongside Iformation, there may also be /aɪ̯/-prefixation (and /aɪ̯ja/-prefixation) processes, particularly as there does seem to exist an /aɪ̯/-suffixation process, seen in examples like /ʃaanti-aɪ̯/ Shanti-I and /ful-aɪ̯/ Full-I “fullness” (alongside of the Iformed /jul-aɪ̯/ Yool-I). This suffixation process seems likely to derive from analogy to Selassie-I and Rastafar-I and the various morphological reanalyses such words have undergone in the Rastafari community. Some apparent deviant Iformations may in fact be the result of /aɪ̯(ja)/-prefixation; and some forms (e.g. /aɪ̯jajaund/) appear to have undergone both Iformation and /aɪ̯ja/-prefixation.2

4 Conclusion

The two prominent and formally-unusual morphological processes found in Rasta Talk, namely overstandings and Iformations, display features which set them apart from other better-known morphological operations. Overstandings, though they are frequently discussed along with more typical examples of word-play found in Rasta English like politricks or Rasta-Far-Eye, represent a formally-distinct operation, which is triggered by perceived misalignment in the connotational harmonics of a word and its (perceived) components, resulting in replacement of the connotationally-misaligned element by one with the same negative/positive alignment as the connotation of the word as a whole—thus oppression becomes downpression.

Iformation represents a much more predictable process than overstanding. On closer examination, Iformation bears many similarities with the process of blending. More data remain to be collected to further test the grammar formulated here, but the OT-analysis offered here demonstrates that the Iformation process, though subject to further morphological transformations and complications of source word recovery in various ways, is analysable within a formal grammar. Further, I have demonstrated that Iformations like /aɪ̯dɪtieʃan/ (= I + meditation) are akin to blends like posilutely (= positivity + absolutely), tigon (= tiger + lion), and maridelic (= marijuana + psychodelic).

References

1 See Devonish and Harry (2004) and Harry (2006) on the differences in the alignment of the high-tone between forms like /fáada/ “father” and /faadá/ “priest”. It could be that placement of a high tone on particular syllables has consequences for the exact form an Iformation takes.

2 As noted by many scholars (amongst other, Yawney 1979, Pollard 1982, Homiak 1987, Alleyne 1988), I, eye, high, and their homophony in Jamaican Creole, plays a special role in Rasta Talk, and /aɪ̯/ has the character of a “mystical syllable”, rather like Sanskrit ओम om (see further Slade to appear—). For but one example of this feature of /aɪ̯/, see Prof T’s song “3 1 1 I” on the album Iyahbinghi Redemption (Runn Records, 2013) which involves a repeated refrain of /aɪ̯/ /aɪ̯/ /aɪ̯/ /aɪ̯/ /aɪ̯/ /aɪ̯/ /aɪ̯/ /aɪ̯/ /aɪ̯/ /aɪ̯/.
Piñeros, Carlos-Eduardo. 2004. The creation of portmanteaus in the extragrammatical
Formal analysis of novel morphological processes in Rasta Talk